Nanostructures Technology, Research and Applications

Academic and Research Staff
James M. Carter, Robert C. Fleming, Dr. Ralf Heilmann, Mark. K. Mondol,
Dr. Mark L. Schattenburg, and Professor Henry I. Smith

Visiting Scientists and Research Affiliates
Dr. David J.D. Carter, Dr. Patrick N. Everett, Dr. James G. Goodberlet, Dr. Michael L. Lim,
Dr. Bernhard Vögeli, Masaki Yoshizawa, Dr. Jo-Ey Wong, Dr. Jong-Ho Yun

Graduate Students
Matthew Abraham, Solomon Assefa, Tymon Barwicz, Reginald Bryant, Carl Chen, Joy Cheng,
Craig Forest, Dario Gil, J. Todd Hastings, John Ho, Chulmin Joo, Wonjoon Jung,
Jung Wan Jung, Stan Jurga, Paul Konkola, Liz Lyons, Debbie Mascaro, Mitch Meinhold,
Rajesh Menon, Euclid Moon, Thomas O'Reilly, Minghao Qi, Timothy Savas, Yanxia Sun,
Sheila Tandon, Xudong Tang, Ryan Williams, Chee Wei Wong, Michael Walsh, Feng Zhang

Collaborators
Professor Dimitri Antoniadis, Professor Marc Baldo, Professor George Barbastathis,
Professor Vladimir Bulovic, Dr. Fernando Castano, Dr. Jane Guo, Professor Leslie Kolodziejski,
Dr. Kornelius Nielsch, Dr. Gale Petrich, Professor Rajeev Ram, Professor Caroline Ross

Technical and Support Staff
James Daley, Cynthia Lewis and Edward Murphy

1. **Nanostructures Laboratory**

The NanoStructures Laboratory (NSL) at MIT develops techniques for fabricating surface
structures with feature sizes in the range from nanometers to micrometers, and uses these
structures in a variety of research projects. The NSL is closely coupled to the Space
Nanotechnology Laboratory (SNL) with which it shares facilities and a variety of joint programs.
The NSL and SNL include facilities for lithography (photo, interferometric, electron-beam, and x-
ray), etching (chemical, plasma and reactive-ion), liftoff, electroplating, sputter deposition, and e-
beam evaporation. Much of the equipment, and nearly all of the methods, utilized in the
NSL/SNL are developed in house. Generally, commercial lithography and processing equipment,
designed for the semiconductor industry, cannot achieve the resolution needed for
nanofabrication, is inordinately expensive, and lacks the required flexibility for our research. The
research projects within the NSL/SNL fall into four major categories: (1) development of
nanostructure fabrication technology; (2) nanoelectronics, nanomagnetics and microphotonic;
(3) periodic structures for x-ray optics, spectroscopy, atomic interferometry and nanometer
metrology; (4) building a bridge to macromolecular assembly and 3-dimensional structures via
surface templating and membrane folding.